DiffusionMap(data, sigma = "local", k = find_dm_k(nrow(data) - 1L),
n_eigs = min(20L, nrow(data) - 2L), density_norm = TRUE, ...,
distance = c("euclidean", "cosine", "rankcor"), n_local = 5L,
censor_val = NULL, censor_range = NULL, missing_range = NULL,
vars = NULL, verbose = !is.null(censor_range), suppress_dpt = FALSE)vars to select specific columns other than the default: all double value columns'local', 'global', a (numeric) global sigma or a Sigmas object.
When choosing 'global', a global sigma will be calculated using find_sigmas. (Optional. default: 'local')
A larger sigma might be necessary if the eigenvalues can not be found because of a singularity in the matrixfind_dm_k).sigma == 'local', the n_localth nearest neighbor determines the local sigma.DPT in the returned object (default: FALSE)eigenvalueseigenvectorsn_eigs dimensionssigmasdata_enveigenvec0transitionsdd_normkn_localn_localth nearest neighbor is used to determine local kernel densitydensity_normdistancecensor_valcensor_rangemissing_rangevarsfind_sigmas to pre-calculate a fitting global sigma parameterdata(guo)
DiffusionMap(guo)
DiffusionMap(guo, 13, censor_val = 15, censor_range = c(15, 40), verbose = TRUE)
Run the code above in your browser using DataLab